Examples of Locally Cyclic Groups That Are Not Cyclic
- The additive group of rational numbers (Q, +) is locally cyclic – any pair of rational numbers a/b and c/d is contained in the cyclic subgroup generated by 1/bd.
- The additive group of the dyadic rational numbers, the rational numbers of the form a/2b, is also locally cyclic – any pair of dyadic rational numbers a/2b and c/2d is contained in the cyclic subgroup generated by 1/2max(b,d).
- Let p be any prime, and let μp∞ denote the set of all pth-power roots of unity in C, i.e.
- Then μp∞ is locally cyclic but not cyclic. This is the Prüfer p-group. The Prüfer 2-group is closely related to the dyadic rationals (it can be viewed as the dyadic rationals modulo 1).
Read more about this topic: Locally Cyclic Group
Famous quotes containing the words examples of, examples, locally and/or groups:
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“To see ourselves as others see us can be eye-opening. To see others as sharing a nature with ourselves is the merest decency. But it is from the far more difficult achievement of seeing ourselves amongst others, as a local example of the forms human life has locally taken, a case among cases, a world among worlds, that the largeness of mind, without which objectivity is self- congratulation and tolerance a sham, comes.”
—Clifford Geertz (b. 1926)
“... until both employers and workers groups assume responsibility for chastising their own recalcitrant children, they can vainly bay the moon about ignorant and unfair public criticism. Moreover, their failure to impose voluntarily upon their own groups codes of decency and honor will result in more and more necessity for government control.”
—Mary Barnett Gilson (1877?)