Local Search (optimization) - Description

Description

Most problems can be formulated in terms of search space and target in several different manners. For example, for the travelling salesman problem a solution can be a cycle and the criterion to maximize is a combination of the number of nodes and the length of the cycle. But a solution can also be a path, and being a cycle is part of the target.

A local search algorithm starts from a candidate solution and then iteratively moves to a neighbor solution. This is only possible if a neighborhood relation is defined on the search space. As an example, the neighborhood of a vertex cover is another vertex cover only differing by one node. For boolean satisfiability, the neighbors of a truth assignment are usually the truth assignments only differing from it by the evaluation of a variable. The same problem may have multiple different neighborhoods defined on it; local optimization with neighborhoods that involve changing up to k components of the solution is often referred to as k-opt.

Typically, every candidate solution has more than one neighbor solution; the choice of which one to move to is taken using only information about the solutions in the neighborhood of the current one, hence the name local search. When the choice of the neighbor solution is done by taking the one locally maximizing the criterion, the metaheuristic takes the name hill climbing. When no improving configurations are present in the neighborhood, local search is stuck at a locally optimal point. This local-optima problem can be cured by using restarts (repeated local search with different initial conditions), or more complex schemes based on iterations, like iterated local search, on memory, like reactive search optimization, on memory-less stochastic modifications, like simulated annealing.

Termination of local search can be based on a time bound. Another common choice is to terminate when the best solution found by the algorithm has not been improved in a given number of steps. Local search is an anytime algorithm: it can return a valid solution even if it's interrupted at any time before it ends. Local search algorithms are typically approximation or incomplete algorithms, as the search may stop even if the best solution found by the algorithm is not optimal. This can happen even if termination is due to the impossibility of improving the solution, as the optimal solution can lie far from the neighborhood of the solutions crossed by the algorithms.

For specific problems it is possible to devise neighborhoods which are very large, possibly exponentially sized. If the best solution within the neighborhood can be found efficiently, such algorithms are referred to as very large-scale neighborhood search algorithms.

Read more about this topic:  Local Search (optimization)

Famous quotes containing the word description:

    The next Augustan age will dawn on the other side of the Atlantic. There will, perhaps, be a Thucydides at Boston, a Xenophon at New York, and, in time, a Virgil at Mexico, and a Newton at Peru. At last, some curious traveller from Lima will visit England and give a description of the ruins of St. Paul’s, like the editions of Balbec and Palmyra.
    Horace Walpole (1717–1797)

    The type of fig leaf which each culture employs to cover its social taboos offers a twofold description of its morality. It reveals that certain unacknowledged behavior exists and it suggests the form that such behavior takes.
    Freda Adler (b. 1934)

    Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.
    Willard Van Orman Quine (b. 1908)