Properties of A Pair of Spaces
Given some notion of equivalence (e.g., homeomorphism, diffeomorphism, isometry) between topological spaces, two spaces are locally equivalent if every point of the first space has a neighborhood which is equivalent to a neighborhood of the second space.
For instance, the circle and the line are very different objects. One cannot stretch the circle to look like the line, nor compress the line to fit on the circle without gaps or overlaps. However, a small piece of the circle can be stretched and flattened out to look like a small piece of the line. For this reason, one may say that the circle and the line are locally equivalent.
Similarly, the sphere and the plane are locally equivalent. A small enough observer standing on the surface of a sphere (e.g., a person and the Earth) would find it indistinguishable from a plane.
Read more about this topic: Local Property
Famous quotes containing the words properties of a, properties of, properties, pair and/or spaces:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“Like to a pair of loving turtle-doves
That could not live asunder day or night.”
—William Shakespeare (15641616)
“Surely, we are provided with senses as well fitted to penetrate the spaces of the real, the substantial, the eternal, as these outward are to penetrate the material universe. Veias, Menu, Zoroaster, Socrates, Christ, Shakespeare, Swedenborg,these are some of our astronomers.”
—Henry David Thoreau (18171862)