This is a list of complexity classes in computational complexity theory. For other computational and complexity subjects, see list of computability and complexity topics.
Many of these classes have a 'Co' partner which consists of the complements of all languages in the original class. For example if a language L is in NP then the complement of L is in Co-NP. (This doesn't mean that the complement of NP is Co-NP - there are languages which are known to be in both, and other languages which are known to be in neither.)
"The hardest problems" of a class refer to problems, which belong to the class and every other problem of that class can be reduced to it. Furthermore, the reduction is also a problem of the given class, or its subset.
If you don't see a class listed (such as Co-UP) you should look under its partner (such as UP).
#P | Count solutions to an NP problem |
#P-complete | The hardest problems in #P |
2-EXPTIME | Solvable with doubly exponential time |
AC0 | A circuit complexity class of bounded depth. |
ACC0 | A circuit complexity class of bounded depth and counting gates. |
AC | A circuit complexity class. |
AH | The arithmetic hierarchy |
AP | The class of problems alternating Turing machines can solve in polynomial time. |
APX | Optimization problems that have approximation algorithms with constant approximation ratio |
AM | Solvable in polynomial time by an Arthur-Merlin protocol |
BPP | Solvable in polynomial time by randomized algorithms (answer is probably right) |
BQP | Solvable in polynomial time on a quantum computer (answer is probably right) |
co-NP | "NO" answers checkable in polynomial time by a non-deterministic machine |
co-NP-complete | The hardest problems in co-NP |
DSPACE(f(n)) | Solvable by a deterministic machine in space O(f(n)). |
DTIME(f(n)) | Solvable by a deterministic machine in time O(f(n)). |
E | Solvable in exponential time with linear exponent |
ELEMENTARY | The union of the classes in the exponential hierarchy |
ESPACE | Solvable in exponential space with linear exponent |
EXP | Same as EXPTIME |
EXPSPACE | Solvable in exponential space |
EXPTIME | Solvable with exponential time |
FNP | The analogue of NP for function problems |
FP | The analogue of P for function problems |
FPNP | The analogue of PNP for function problems; the home of the traveling salesman problem |
FPT | Fixed-parameter tractable |
GapL | Logspace-reducible to computing the integer determinant of a matrix |
IP | Solvable in polynomial time by an interactive proof system |
L | Solvable in logarithmic (small) space |
LOGCFL | Logspace-reducible to a context-free language |
MA | Solvable in polynomial time by a Merlin-Arthur protocol |
NC | Solvable efficiently (in polylogarithmic time) on parallel computers |
NE | Solvable by a non-deterministic machine in exponential time with linear exponent |
NESPACE | Solvable by a non-deterministic machine in exponential space with linear exponent |
NEXP | Same as NEXPTIME |
NEXPSPACE | Solvable by a non-deterministic machine in exponential space |
NEXPTIME | Solvable by a non-deterministic machine in exponential time |
NL | "YES" answers checkable in logarithmic space |
NONELEMENTARY | Complement of ELEMENTARY. |
NP | "YES" answers checkable in polynomial time (see complexity classes P and NP) |
NP-complete | The hardest or most expressive problems in NP |
NP-easy | Analogue to PNP for function problems; another name for FPNP |
NP-equivalent | The hardest problems in FPNP |
NP-hard | Either NP-complete or harder |
NSPACE(f(n)) | Solvable by a non-deterministic machine in space O(f(n)). |
NTIME(f(n)) | Solvable by a non-deterministic machine in time O(f(n)). |
P | Solvable in polynomial time |
P-complete | The hardest problems in P to solve on parallel computers |
P/poly | Solvable in polynomial time given an "advice string" depending only on the input size |
PCP | Probabilistically Checkable Proof |
PH | The union of the classes in the polynomial hierarchy |
PNP | Solvable in polynomial time with an oracle for a problem in NP; also known as Δ2P |
PP | Probabilistically Polynomial (answer is right with probability slightly more than ½) |
PR | Solvable by recursively building up arithmetic functions. |
PSPACE | Solvable with polynomial memory. |
PSPACE-complete | The hardest problems in PSPACE. |
R | Solvable in a finite amount of time. |
RE | Problems to which we can answer "YES" in a finite amount of time, but a "NO" answer might never come. |
RL | Solvable in logarithmic space by randomized algorithms (NO answer is probably right, YES is certainly right) |
RP | Solvable in polynomial time by randomized algorithms (NO answer is probably right, YES is certainly right) |
SL | Problems log-space reducible to determining if a path exist between given vertices in an undirected graph. In October 2004 it was discovered that this class is in fact equal to L. |
S2P | one round games with simultaneous moves refereed deterministically in polynomial time |
TFNP | Total function problems solvable in non-deterministic polynomial time. A problem in this class has the property that every input has an output whose validity may be checked efficiently, and the computational challenge is to find a valid output. |
UP | Unambiguous Non-Deterministic Polytime functions. |
ZPL | Solvable by randomized algorithms (answer is always right, average running space is logarithmic) |
ZPP | Solvable by randomized algorithms (answer is always right, average running time is polynomial) |
Famous quotes containing the words list of, list, complexity and/or classes:
“My list of things I never pictured myself saying when I pictured myself as a parent has grown over the years.”
—Polly Berrien Berends (20th century)
“A mans interest in a single bluebird is worth more than a complete but dry list of the fauna and flora of a town.”
—Henry David Thoreau (18171862)
“In times like ours, where the growing complexity of life leaves us barely the time to read the newspapers, where the map of Europe has endured profound rearrangements and is perhaps on the brink of enduring yet others, where so many threatening and new problems appear everywhere, you will admit it may be demanded of a writer that he be more than a fine wit who makes us forget in idle and byzantine discussions on the merits of pure form ...”
—Marcel Proust (18711922)
“I am ... by tradition and long study a complete snob. P. Marlowe and I do not despise the upper classes because they take baths and have money; we despise them because they are phony.”
—Raymond Chandler (18881959)