Proof of Liouville's Formula
We omit the argument x for brevity. By the Leibniz formula for determinants, the derivative of the determinant of Φ = (Φi, j )i, j ∈ {0,...,n} can be calculated by differentiating one row at a time and taking the sum, i.e.
-
(2)
Since the matrix-valued solution Φ satisfies the equation, we have for every entry of the matrix Φ'
or for the entire row
When we subtract from the i th row the linear combination
of all the other rows, then the value of the determinant remains unchanged, hence
for every i ∈ {1, . . ., n} by the linearity of the determinant with respect to every row. Hence
-
(3)
by (2) and the definition of the trace. It remains to show that this representation of the derivative implies Liouville's formula.
Fix x0 ∈ I. Since the trace of A is assumed to be continuous function on I, it is bounded on every closed and bounded subinterval of I and therefore integrable, hence
is a well defined function. Differentiating both sides, using the product rule, the chain rule, the derivative of the exponential function and the fundamental theorem of calculus, we obtain
due to the derivative in (3). Therefore, g has to be constant on I, because otherwise we would obtain a contradiction to the mean value theorem (applied separately to the real and imaginary part in the complex-valued case). Since g(x0) = det Φ(x0), Liouville's formula follows by solving the definition of g for det Φ(x).
Read more about this topic: Liouville's Formula
Famous quotes containing the words proof of, proof and/or formula:
“To cease to admire is a proof of deterioration.”
—Charles Horton Cooley (18641929)
“If any proof were needed of the progress of the cause for which I have worked, it is here tonight. The presence on the stage of these college women, and in the audience of all those college girls who will some day be the nations greatest strength, will tell their own story to the world.”
—Susan B. Anthony (18201906)
“Hidden away amongst Aschenbachs writing was a passage directly asserting that nearly all the great things that exist owe their existence to a defiant despite: it is despite grief and anguish, despite poverty, loneliness, bodily weakness, vice and passion and a thousand inhibitions, that they have come into being at all. But this was more than an observation, it was an experience, it was positively the formula of his life and his fame, the key to his work.”
—Thomas Mann (18751955)