In mathematics, Liouville's formula, also known as the Abel-Jacobi-Liouville Identity, is an equation that expresses the determinant of a square-matrix solution of a first-order system of homogeneous linear differential equations in terms of the sum of the diagonal coefficients of the system. The formula is named after the French mathematician Joseph Liouville. Jacobi's formula provides another representation of the same mathematical relationship.
Liouville's formula is a generalization of Abel's identity and can be used to prove it. Since Liouville's formula relates the different linearly independent solutions of the system of differential equations, it can help to find one solution from the other(s), see the example application below.
Read more about Liouville's Formula: Statement of Liouville's Formula, Example Application, Proof of Liouville's Formula
Famous quotes containing the word formula:
“Hidden away amongst Aschenbachs writing was a passage directly asserting that nearly all the great things that exist owe their existence to a defiant despite: it is despite grief and anguish, despite poverty, loneliness, bodily weakness, vice and passion and a thousand inhibitions, that they have come into being at all. But this was more than an observation, it was an experience, it was positively the formula of his life and his fame, the key to his work.”
—Thomas Mann (18751955)