Linear Independence - Linear Dependence Between Random Variables

Linear Dependence Between Random Variables

The covariance is sometimes called a measure of "linear dependence" between two random variables. That does not mean the same thing as in the context of linear algebra. When the covariance is normalized, one obtains the correlation matrix. From it, one can obtain the Pearson coefficient, which gives us the goodness of the fit for the best possible linear function describing the relation between the variables. In this sense covariance is a linear gauge of dependence.

Read more about this topic:  Linear Independence

Famous quotes containing the words dependence, random and/or variables:

    All charming people have something to conceal, usually their total dependence on the appreciation of others.
    Cyril Connolly (1903–1974)

    It is a secret from nobody that the famous random event is most likely to arise from those parts of the world where the old adage “There is no alternative to victory” retains a high degree of plausibility.
    Hannah Arendt (1906–1975)

    The variables are surprisingly few.... One can whip or be whipped; one can eat excrement or quaff urine; mouth and private part can be meet in this or that commerce. After which there is the gray of morning and the sour knowledge that things have remained fairly generally the same since man first met goat and woman.
    George Steiner (b. 1929)