Anisotropic Homogeneous Media
For anisotropic media, the stiffness tensor is more complicated. The symmetry of the stress tensor means that there are at most 6 different elements of stress. Similarly, there are at most 6 different elements of the strain tensor . Hence the 4th rank stiffness tensor may be written as a 2nd rank matrix . Voigt notation is the standard mapping for tensor indices,
With this notation, one can write the elasticity matrix for any linearly elastic medium as:
As shown, the matrix is symmetric, because of the linear relation between stress and strain. Hence, there are at most 21 different elements of .
The isotropic special case has 2 independent elements:
The simplest anisotropic case, that of cubic symmetry has 3 independent elements:
The case of transverse isotropy, also called polar anisotropy, (with a single axis (the 3-axis) of symmetry) has 5 independent elements:
When the transverse isotropy is weak (i.e. close to isotropy), an alternative parametrization utilizing Thomsen parameters, is convenient for the formulas for wave speeds.
The case of orthotropy (the symmetry of a brick) has 9 independent elements:
Read more about this topic: Linear Elasticity
Famous quotes containing the words homogeneous and/or media:
“If we Americans are to survive it will have to be because we choose and elect and defend to be first of all Americans; to present to the world one homogeneous and unbroken front, whether of white Americans or black ones or purple or blue or green.... If we in America have reached that point in our desperate culture when we must murder children, no matter for what reason or what color, we dont deserve to survive, and probably wont.”
—William Faulkner (18971962)
“The media transforms the great silence of things into its opposite. Formerly constituting a secret, the real now talks constantly. News reports, information, statistics, and surveys are everywhere.”
—Michel de Certeau (19251986)