Linear Independence
For some sets of vectors v1,...,vn, a single vector can be written in two different ways as a linear combination of them:
Equivalently, by subtracting these a non-trivial combination is zero:
If that is possible, then v1,...,vn are called linearly dependent; otherwise, they are linearly independent. Similarly, we can speak of linear dependence or independence of an arbitrary set S of vectors.
If S is linearly independent and the span of S equals V, then S is a basis for V.
Read more about this topic: Linear Combination
Famous quotes containing the word independence:
“Traditionally in American society, men have been trained for both competition and teamwork through sports, while women have been reared to merge their welfare with that of the family, with fewer opportunities for either independence or other team identifications, and fewer challenges to direct competition. In effect, women have been circumscribed within that unit where the benefit of one is most easily believed to be the benefit of all.”
—Mary Catherine Bateson (b. 1939)