Definition For Iterated Functions
Let be a metric space, and let be a continuous function. The -limit set of, denoted by, is the set of cluster points of the forward orbit of the iterated function . Hence, if and only if there is a strictly increasing sequence of natural numbers such that as . Another way to express this is
where denotes the closure of set . The closure is here needed, since we have not assumed that the underlying metric space of interest to be a complete metric space. The points in the limit set are non-wandering (but may not be recurrent points). This may also be formulated as the outer limit (limsup) of a sequence of sets, such that
If is a homeomorphism (that is, a bicontinuous bijection), then the -limit set is defined in a similar fashion, but for the backward orbit; i.e. .
Both sets are -invariant, and if is compact, they are compact and nonempty.
Read more about this topic: Limit Set
Famous quotes containing the words definition, iterated and/or functions:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“The customary cry,
Come buy, come buy,
With its iterated jingle
Of sugar-bated words:”
—Christina Georgina Rossetti (18301894)
“Let us stop being afraid. Of our own thoughts, our own minds. Of madness, our own or others. Stop being afraid of the mind itself, its astonishing functions and fandangos, its complications and simplifications, the wonderful operation of its machinerymore wonderful because it is not machinery at all or predictable.”
—Kate Millett (b. 1934)