Definition
Let S be a subset of a topological space X. A point x in X is a limit point of S if every neighbourhood of x contains at least one point of S different from x itself. Note that it doesn't make a difference if we relax the condition to open neighbourhoods only.
This is equivalent, in a T1 space, to requiring that every neighbourhood of x contains infinitely many points of S. It is often convenient to use the "open neighbourhood" form of the definition to show that a point is a limit point and to use the "general neighbourhood" form of the definition to derive facts from a known limit point.
Alternatively, if the space X is sequential, we may say that x ∈ X is a limit point of S if and only if there is an ω-sequence of points in S \ {x} whose limit is x; hence, x is called a limit point.
Read more about this topic: Limit Point
Famous quotes containing the word definition:
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)