Lie Algebra - Relation To Lie Groups

Relation To Lie Groups

Although Lie algebras are often studied in their own right, historically they arose as a means to study Lie groups. Given a Lie group, a Lie algebra can be associated to it either by endowing the tangent space to the identity with the differential of the adjoint map, or by considering the left-invariant vector fields as mentioned in the examples. This association is functorial, meaning that homomorphisms of Lie groups lift to homomorphisms of Lie algebras, and various properties are satisfied by this lifting: it commutes with composition, it maps Lie subgroups, kernels, quotients and cokernels of Lie groups to subalgebras, kernels, quotients and cokernels of Lie algebras, respectively.

The functor L which takes each Lie group to its Lie algebra and each homomorphism to its differential is faithful and exact. It is however not an equivalence of categories: different Lie groups may have isomorphic Lie algebras (for example SO(3) and SU(2) ), and there are (infinite dimensional) Lie algebras which are not associated to any Lie group.

However, when the Lie algebra is finite-dimensional, one can associate to it a simply connected Lie group having as its Lie algebra. More precisely, the Lie algebra functor L has a left adjoint functor Γ from finite-dimensional (real) Lie algebras to Lie groups, factoring through the full subcategory of simply connected Lie groups. In other words, there is a natural isomorphism of bifunctors

The adjunction (corresponding to the identity on ) is an isomorphism, and the other adjunction is the projection homomorphism from the universal cover group of the identity component of H to H. It follows immediately that if G is simply connected, then the Lie algebra functor establishes a bijective correspondence between Lie group homomorphisms G→H and Lie algebra homomorphisms L(G)→L(H).

The universal cover group above can be constructed as the image of the Lie algebra under the exponential map. More generally, we have that the Lie algebra is homeomorphic to a neighborhood of the identity. But globally, if the Lie group is compact, the exponential will not be injective, and if the Lie group is not connected, simply connected or compact, the exponential map need not be surjective.

If the Lie algebra is infinite-dimensional, the issue is more subtle. In many instances, the exponential map is not even locally a homeomorphism (for example, in Diff(S1), one may find diffeomorphisms arbitrarily close to the identity which are not in the image of exp). Furthermore, some infinite-dimensional Lie algebras are not the Lie algebra of any group.

The correspondence between Lie algebras and Lie groups is used in several ways, including in the classification of Lie groups and the related matter of the representation theory of Lie groups. Every representation of a Lie algebra lifts uniquely to a representation of the corresponding connected, simply connected Lie group, and conversely every representation of any Lie group induces a representation of the group's Lie algebra; the representations are in one to one correspondence. Therefore, knowing the representations of a Lie algebra settles the question of representations of the group.

As for classification, it can be shown that any connected Lie group with a given Lie algebra is isomorphic to the universal cover mod a discrete central subgroup. So classifying Lie groups becomes simply a matter of counting the discrete subgroups of the center, once the classification of Lie algebras is known (solved by Cartan et al. in the semisimple case).

Read more about this topic:  Lie Algebra

Famous quotes containing the words relation to, relation, lie and/or groups:

    The proper study of mankind is man in his relation to his deity.
    —D.H. (David Herbert)

    The whole point of Camp is to dethrone the serious. Camp is playful, anti-serious. More precisely, Camp involves a new, more complex relation to “the serious.” One can be serious about the frivolous, frivolous about the serious.
    Susan Sontag (b. 1933)

    I make no secret of the fact that I would rather lie on a sofa than sweep beneath it. But you have to be efficient if you’re going to be lazy.
    Shirley Conran (b. 1932)

    The awareness of the all-surpassing importance of social groups is now general property in America.
    Johan Huizinga (1872–1945)