Definition and First Properties
A Lie algebra is a vector space over some field F together with a binary operation called the Lie bracket, which satisfies the following axioms:
- Bilinearity:
- for all scalars a, b in F and all elements x, y, z in .
- Alternating on :
- for all x in .
- The Jacobi identity:
- for all x, y, z in .
Note that the bilinearity and alternating properties imply anticommutativity, i.e., for all elements x, y in, while anticommutativity only implies the alternating property if the field's characteristic is not 2.
For any associative algebra A with multiplication, one can construct a Lie algebra L(A). As a vector space, L(A) is the same as A. The Lie bracket of two elements of L(A) is defined to be their commutator in A:
The associativity of the multiplication * in A implies the Jacobi identity of the commutator in L(A). In particular, the associative algebra of n × n matrices over a field F gives rise to the general linear Lie algebra The associative algebra A is called an enveloping algebra of the Lie algebra L(A). It is known that every Lie algebra can be embedded into one that arises from an associative algebra in this fashion. See universal enveloping algebra.
Read more about this topic: Lie Algebra
Famous quotes containing the words definition and/or properties:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)