Lens Space - Classification of 3-dimensional Lens Spaces

Classification of 3-dimensional Lens Spaces

Classifications up to homeomorphism and homotopy equivalence are known, as follows. The three-dimensional spaces and are:

  1. homotopy equivalent if and only if for some ;
  2. homeomorphic if and only if .
    In this case they are "obviously" homeomorphic, as one can easily produce a homeomorphism. It is harder to show that these are the only homeomorphic lens spaces.

The invariant that gives the homotopy classification of 3-dimensional lens spaces is the torsion linking form.

The homeomorphism classification is more subtle, and is given by Reidemeister torsion. This was given in (Reidemeister 1935) as a classification up to PL homeomorphism, but it was shown in (Brody 1960) to be a homeomorphism classification. In modern terms, lens spaces are determined by simple homotopy type, and there are no normal invariants (like characteristic classes) or surgery obstruction.

A knot-theoretic classification is given in (Przytycki & Yasuhara 2003): let C be a closed curve in the lens space which lifts to a knot in the universal cover of the lens space. If the lifted knot has a trivial Alexander polynomial, compute the torsion linking form on the pair (C,C) – then this gives the homeomorphism classification.

Another invariant is the homotopy type of the configuration spaces – (Salvatore & Longoni 2004) showed that homotopy equivalent but not homeomorphic lens spaces may have configuration spaces with different homotopy types, which can be detected by different Massey products.

Read more about this topic:  Lens Space

Famous quotes containing the word spaces:

    Le silence éternel de ces espaces infinis m’effraie. The eternal silence of these infinite spaces frightens me.
    Blaise Pascal (1623–1662)