A **lens space** is an example of a topological space, considered in mathematics. The term often refers to a specific class of 3-manifolds, but in general can be defined for higher dimensions.

In the 3-manifold case, a lens space can be visualized as the result of gluing two solid tori together by a homeomorphism of their boundaries. Often the 3-sphere and, both of which can be obtained as above, are not counted as they are considered trivial special cases.

The three-dimensional lens spaces were introduced by Tietze in 1908. They were the first known examples of 3-manifolds which were not determined by their homology and fundamental group alone, and the simplest examples of closed manifolds whose homeomorphism type is not determined by their homotopy type. J.W. Alexander in 1919 showed that the lens spaces and were not homeomorphic even though they have isomorphic fundamental groups and the same homology, though they do not have the same homotopy type. Other lens spaces have even the same homotopy type (and thus isomorphic fundamental groups and homology), but not the same homeomorphism type; they can thus be seen as the birth of geometric topology of manifolds as distinct from algebraic topology.

There is a complete classification of three-dimensional lens spaces, by fundamental group and Reidemeister torsion.

Read more about Lens Space: Definition, Alternative Definitions of Three-dimensional Lens Spaces, Classification of 3-dimensional Lens Spaces

### Famous quotes containing the word space:

“Play is a major avenue for learning to manage anxiety. It gives the child a safe *space* where she can experiment at will, suspending the rules and constraints of physical and social reality. In play, the child becomes master rather than subject.... Play allows the child to transcend passivity and to become the active doer of what happens around her.”

—Alicia F. Lieberman (20th century)