Proof
The law of total variance can be proved using the law of total expectation. First,
from the definition of variance. Then we apply the law of total expectation to each term by conditioning on the random variable X:
Now we rewrite the conditional second moment of Y in terms of its variance and first moment:
Since the expectation of a sum is the sum of expectations, the terms can now be regrouped:
Finally, we recognize the terms in parentheses as the variance of the conditional expectation E:
Read more about this topic: Law Of Total Variance
Famous quotes containing the word proof:
“The insatiable thirst for everything which lies beyond, and which life reveals, is the most living proof of our immortality.”
—Charles Baudelaire (18211867)
“Ah! I have penetrated to those meadows on the morning of many a first spring day, jumping from hummock to hummock, from willow root to willow root, when the wild river valley and the woods were bathed in so pure and bright a light as would have waked the dead, if they had been slumbering in their graves, as some suppose. There needs no stronger proof of immortality. All things must live in such a light. O Death, where was thy sting? O Grave, where was thy victory, then?”
—Henry David Thoreau (18171862)
“O, popular applause! what heart of man
Is proof against thy sweet, seducing charms?”
—William Cowper (17311800)