In the mathematical field of graph theory the Laplacian matrix, sometimes called admittance matrix or Kirchhoff matrix, is a matrix representation of a graph. Together with Kirchhoff's theorem it can be used to calculate the number of spanning trees for a given graph. The Laplacian matrix can be used to find many other properties of the graph; see spectral graph theory. Cheeger's inequality from Riemannian Geometry has a discrete analogue involving the Laplacian Matrix; this is perhaps the most important theorem in Spectral Graph theory and one of the most useful facts in algorithmic applications. It approximates the sparsest cut of a graph through the second eigenvalue of its Laplacian.
Read more about Laplacian Matrix: Definition, Example, Properties, Deformed Laplacian, Symmetric Normalized Laplacian, Random Walk Normalized Laplacian, As A Matrix Representation of The Negative Discrete Laplace Operator, As An Approximation To The Negative Continuous Laplacian
Famous quotes containing the word matrix:
“In all cultures, the family imprints its members with selfhood. Human experience of identity has two elements; a sense of belonging and a sense of being separate. The laboratory in which these ingredients are mixed and dispensed is the family, the matrix of identity.”
—Salvador Minuchin (20th century)