Laplacian Matrix

In the mathematical field of graph theory the Laplacian matrix, sometimes called admittance matrix or Kirchhoff matrix, is a matrix representation of a graph. Together with Kirchhoff's theorem it can be used to calculate the number of spanning trees for a given graph. The Laplacian matrix can be used to find many other properties of the graph; see spectral graph theory. Cheeger's inequality from Riemannian Geometry has a discrete analogue involving the Laplacian Matrix; this is perhaps the most important theorem in Spectral Graph theory and one of the most useful facts in algorithmic applications. It approximates the sparsest cut of a graph through the second eigenvalue of its Laplacian.

Read more about Laplacian Matrix:  Definition, Example, Properties, Deformed Laplacian, Symmetric Normalized Laplacian, Random Walk Normalized Laplacian, As A Matrix Representation of The Negative Discrete Laplace Operator, As An Approximation To The Negative Continuous Laplacian

Famous quotes containing the word matrix:

    “The matrix is God?”
    “In a manner of speaking, although it would be more accurate ... to say that the matrix has a God, since this being’s omniscience and omnipotence are assumed to be limited to the matrix.”
    “If it has limits, it isn’t omnipotent.”
    “Exactly.... Cyberspace exists, insofar as it can be said to exist, by virtue of human agency.”
    William Gibson (b. 1948)