In algebraic geometry, a Kummer quartic surface, first studied by Kummer (1864), is an irreducible algebraic surface of degree 4 in with the maximal possible number of 16 double points. Any such surface is the Kummer variety of the Jacobian of a smooth hyperelliptic curve of genus 2; i.e. a quotient of the Jacobian by the Kummer involution x ↦ −x. The Kummer involution has 16 fixed points: the 16 2-torsion point of the Jacobian, and they are the 16 singular points of the quartic surface. Resolving the 16 double points of the quotient of a (possibly nonalgebraic) torus by the Kummer involution gives a K3 surface with 16 disjoint rational curves; these K3 surfaces are also sometimes called Kummer surfaces.
Other surface closely related to Kummer surfaces include Weddle surfaces, Wave surfaces, and tetrahedroids.
Famous quotes containing the word surface:
“Night City was like a deranged experiment in Social Darwinism, designed by a bored researcher who kept one thumb permanently on the fast-forward button. Stop hustling and you sank without a trace, but move a little too swiftly and youd break the fragile surface tension of the black market; either way, you were gone ... though heart or lungs or kidneys might survive in the service of some stranger with New Yen for the clinic tanks.”
—William Gibson (b. 1948)