Relation To The Beta Distribution
The Kuramaswamy distribution is closely related to Beta distribution. Assume that Xa,b is a Kumaraswamy distributed random variable with parameters a and b. Then Xa,b is the a-th root of a suitably defined Beta distributed random variable. More formally, Let Y1,b denote a Beta distributed random variable with parameters and . One has the following relation between Xa,b and Y1,b.
with equality in distribution.
One may introduce generalised Kuramaswamy distributions by considering random variables of the form, with and where denotes a Beta distributed random variable with parameters and . The raw moments of this generalized Kumaraswamy distribution are given by:
Note that we can reobtain the original moments setting, and . However, in general the cumulative distribution function does not have a closed form solution.
Read more about this topic: Kumaraswamy Distribution
Famous quotes containing the words relation to, relation and/or distribution:
“Light is meaningful only in relation to darkness, and truth presupposes error. It is these mingled opposites which people our life, which make it pungent, intoxicating. We only exist in terms of this conflict, in the zone where black and white clash.”
—Louis Aragon (18971982)
“There is a constant in the average American imagination and taste, for which the past must be preserved and celebrated in full-scale authentic copy; a philosophy of immortality as duplication. It dominates the relation with the self, with the past, not infrequently with the present, always with History and, even, with the European tradition.”
—Umberto Eco (b. 1932)
“The man who pretends that the distribution of income in this country reflects the distribution of ability or character is an ignoramus. The man who says that it could by any possible political device be made to do so is an unpractical visionary. But the man who says that it ought to do so is something worse than an ignoramous and more disastrous than a visionary: he is, in the profoundest Scriptural sense of the word, a fool.”
—George Bernard Shaw (18561950)