Kleene Fixed-point Theorem - Proof

Proof

We first have to show that the ascending Kleene chain of f exists in L. To show that, we prove the following lemma:

Lemma 1:If L is CPO, and f : L → L is a Scott-continuous, then

Proof by induction:

  • Assume n = 0. Then, since ⊥ is the least element.
  • Assume n > 0. Then we have to show that . By rearranging we get . By inductive assumption, we know that holds, and because f is monotone (property of Scott-continuous functions), the result holds as well.

Immediate corollary of Lemma 1 is the existence of the chain.

Let M be the set of all elements of the chain: . This set is clearly directed. From definition of CPO follows that this set has a supremum, we will call it m. What remains now is to show that m is the fixpoint. that is, we have to show that f(m) = m. Because f is continuous, f(sup(M)) = sup(f(M)), that is f(m) = sup(f(M)). But sup(f(M)) = sup(M) (from the property of the chain) and from that f(m) = m, making m a fixpoint.

The proof that m is the least fixpoint can be done by contradiction. Assume k is a fixpoint and k < m. Than there has to be i such that . But than for all j > i the result would never be greater than k and so m cannot be a supremum of M, which is a contradiction.

Read more about this topic:  Kleene Fixed-point Theorem

Famous quotes containing the word proof:

    To cease to admire is a proof of deterioration.
    Charles Horton Cooley (1864–1929)

    If we view our children as stupid, naughty, disturbed, or guilty of their misdeeds, they will learn to behold themselves as foolish, faulty, or shameful specimens of humanity. They will regard us as judges from whom they wish to hide, and they will interpret everything we say as further proof of their unworthiness. If we view them as innocent, or at least merely ignorant, they will gain understanding from their experiences, and they will continue to regard us as wise partners.
    Polly Berrien Berends (20th century)

    It comes to pass oft that a terrible oath, with a swaggering accent sharply twanged off, gives manhood more approbation than ever proof itself would have earned him.
    William Shakespeare (1564–1616)