Definition
Various inequivalent definitions of Kleene algebras and related structures have been given in the literature. See for a survey. Here we will give the definition that seems to be the most common nowadays.
A Kleene algebra is a set A together with two binary operations + : A × A → A and · : A × A → A and one function * : A → A, written as a + b, ab and a* respectively, so that the following axioms are satisfied.
- Associativity of + and ·: a + (b + c) = (a + b) + c and a(bc) = (ab)c for all a, b, c in A.
- Commutativity of +: a + b = b + a for all a, b in A
- Distributivity: a(b + c) = (ab) + (ac) and (b + c)a = (ba) + (ca) for all a, b, c in A
- Identity elements for + and ·: There exists an element 0 in A such that for all a in A: a + 0 = 0 + a = a. There exists an element 1 in A such that for all a in A: a1 = 1a = a.
- a0 = 0a = 0 for all a in A.
The above axioms define a semiring. We further require:
- + is idempotent: a + a = a for all a in A.
It is now possible to define a partial order ≤ on A by setting a ≤ b if and only if a + b = b (or equivalently: a ≤ b if and only if there exists an x in A such that a + x = b). With this order we can formulate the last two axioms about the operation *:
- 1 + a(a*) ≤ a* for all a in A.
- 1 + (a*)a ≤ a* for all a in A.
- if a and x are in A such that ax ≤ x, then a*x ≤ x
- if a and x are in A such that xa ≤ x, then x(a*) ≤ x
Intuitively, one should think of a + b as the "union" or the "least upper bound" of a and b and of ab as some multiplication which is monotonic, in the sense that a ≤ b implies ax ≤ bx. The idea behind the star operator is a* = 1 + a + aa + aaa + ... From the standpoint of programming language theory, one may also interpret + as "choice", · as "sequencing" and * as "iteration".
Read more about this topic: Kleene Algebra
Famous quotes containing the word definition:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)