Kernel (matrix) - Definition

Definition

The kernel of an m × n matrix A with coefficients in a field K (typically the field of the real numbers or of the complex numbers) is the set

where 0 denotes the zero vector with m components. The matrix equation Ax = 0 is equivalent to a homogeneous system of linear equations:

\mathbf{A}\textbf{x}=\textbf{0} \;\;\Leftrightarrow\;\; \begin{alignat}{6}
a_{11} x_1 &&\; + \;&& a_{12} x_2 &&\; + \cdots + \;&& a_{1n} x_n &&\; = 0& \\
a_{21} x_1 &&\; + \;&& a_{22} x_2 &&\; + \cdots + \;&& a_{2n} x_n &&\; = 0& \\
\vdots\;\;\; && && \vdots\;\;\; && && \vdots\;\;\; && \vdots\,& \\
a_{m1} x_1 &&\; + \;&& a_{m2} x_2 &&\; + \cdots + \;&& a_{mn} x_n &&\; = 0. &
\end{alignat}

From this viewpoint, the null space of A is the same as the solution set to the homogeneous system.

Read more about this topic:  Kernel (matrix)

Famous quotes containing the word definition:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)