Kernel (matrix) - Basis

Basis

A basis of the null space of a matrix may be computed by Gaussian elimination.

For this purpose, given an m × n matrix A, we construct first the row augmented matrix where I is the n × n identity matrix.

Computing its column echelon form by Gaussian elimination (or any other available method), we get a matrix A basis of the null space of A consists in the non zero columns of C such that the corresponding column of B is a zero column.

In fact, the computation may be stopped as soon as the upper matrix is in column echelon form: the remainder of the computation consists in changing the basis of the vector space generated by the columns whose upper part is zero.

For example, suppose that

A=\left[ \begin{array}{cccccc}
1 & 0 & -3 & 0 & 2 & -8 \\
0 & 1 & 5 & 0 & -1 & 4 \\
0 & 0 & 0 & 1 & 7 & -9 \\
0 & 0 & 0 & 0 & 0 & 0 \end{array} \,\right].

Then

 \left=
\left[\begin{array}{cccccc}
1 & 0 & -3 & 0 & 2 & -8 \\
0 & 1 & 5 & 0 & -1 & 4 \\
0 & 0 & 0 & 1 & 7 & -9 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline\\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right].

Putting the upper part in column echelon form by column operations on the whole matrix gives

 \left=
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline\\
1 & 0 & 0 & 3 & -2 & 8 \\
0 & 1 & 0 & -5 & 1 & -4 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -7 & 9 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right].

The last three columns of B are zero columns. Therefore, the three last vectors of C,

\left,\;
\left,\;
\left

are a basis of the null space of A.

Read more about this topic:  Kernel (matrix)

Famous quotes containing the word basis:

    Socialism proposes no adequate substitute for the motive of enlightened selfishness that to-day is at the basis of all human labor and effort, enterprise and new activity.
    William Howard Taft (1857–1930)

    The self ... might be regarded as a sort of citadel of the mind, fortified without and containing selected treasures within, while love is an undivided share in the rest of the universe. In a healthy mind each contributes to the growth of the other: what we love intensely or for a long time we are likely to bring within the citadel, and to assert as part of ourself. On the other hand, it is only on the basis of a substantial self that a person is capable of progressive sympathy or love.
    Charles Horton Cooley (1864–1929)

    Protoplasm, simple or nucleated, is the formal basis of all life. It is the clay of the potter: which, bake it and paint it as he will, remains clay, separated by artifice, and not by nature from the commonest brick or sun-dried clod.
    Thomas Henry Huxley (1825–1895)