Kepler Problem

In classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force F that varies in strength as the inverse square of the distance r between them. The force may be either attractive or repulsive. The "problem" to be solved is to find the position or speed of the two bodies over time given their masses and initial positions and velocities. Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital elements.

The Kepler problem is named after Johannes Kepler, who proposed Kepler's laws of planetary motion (which are part of classical mechanics and solve the problem for the orbits of the planets) and investigated the types of forces that would result in orbits obeying those laws (called Kepler's inverse problem).

For a discussion of the Kepler problem specific to radial orbits, see: Radial trajectory. The Kepler problem in general relativity produces more accurate predictions, especially in strong gravitational fields.

Read more about Kepler Problem:  Applications, Mathematical Definition, Solution of The Kepler Problem

Famous quotes containing the word problem:

    The disesteem into which moralists have fallen is due at bottom to their failure to see that in an age like this one the function of the moralist is not to exhort men to be good but to elucidate what the good is. The problem of sanctions is secondary.
    Walter Lippmann (1889–1974)