Kepler Problem

In classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force F that varies in strength as the inverse square of the distance r between them. The force may be either attractive or repulsive. The "problem" to be solved is to find the position or speed of the two bodies over time given their masses and initial positions and velocities. Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital elements.

The Kepler problem is named after Johannes Kepler, who proposed Kepler's laws of planetary motion (which are part of classical mechanics and solve the problem for the orbits of the planets) and investigated the types of forces that would result in orbits obeying those laws (called Kepler's inverse problem).

For a discussion of the Kepler problem specific to radial orbits, see: Radial trajectory. The Kepler problem in general relativity produces more accurate predictions, especially in strong gravitational fields.

Read more about Kepler Problem:  Applications, Mathematical Definition, Solution of The Kepler Problem

Famous quotes containing the word problem:

    The family environment in which your children are growing up is different from that in which you grew up. The decisions our parents made and the strategies they used were developed in a different context from what we face today, even if the “content” of the problem is the same. It is a mistake to think that our own experience as children and adolescents will give us all we need to help our children. The rules of the game have changed.
    Lawrence Kutner (20th century)