Julia Set - The Potential Function and The Real Iteration Number

The Potential Function and The Real Iteration Number

The Julia set for is the unit circle, and on the outer Fatou domain, the potential function is defined by . The equipotential lines for this function are concentric circles. As we have, where is the sequence of iteration generated by z. For the more general iteration, it has been proved that if the Julia set is connected (that is, if c belongs to the (usual) Mandelbrot set), then there exist a biholomorphic map between the outer Fatou domain and the outer of the unit circle such that . This means that the potential function on the outer Fatou domain defined by this correspondence is given by:

This formula has meaning also if the Julia set is not connected, so that we for all c can define the potential function on the Fatou domain containing ∞ by this formula. For a general rational function such that ∞ is a critical point and a fixed point, that is, such that the degree m of the numerator is at least two larger than the degree n of the denominator, we define the potential function on the Fatou domain containing ∞ by:

where d = m - n is the degree of the rational function.

If N is a very large number (e.g. 10100), and if k is the first iteration number such that, we have that, for some real number, which should be regarded as the real iteration number, and we have that:

where the last number is in the interval [0, 1).

For iteration towards a finite attracting cycle of order r, we have that if z* is a point of the cycle, then (the r-fold composition), and the number (> 1) is the attraction of the cycle. If w is a point very near z* and w' is w iterated r times, we have that . Therefore the number is almost independent of k. We define the potential function on the Fatou domain by:

If is a very small number and k is the first iteration number such that, we have that for some real number, which should be regarded as the real iteration number, and we have that:

If the attraction is ∞, meaning that the cycle is super-attracting, meaning again that one of the points of the cycle is a critical point, we must replace by (where w' is w iterated r times) and the formula for by:

And now the real iteration number is given by:

For the colouring we must have a cyclic scale of colours (constructed mathematically, for instance) and containing H colours numbered from 0 to H-1 (H = 500, for instance). We multiply the real number by a fixed real number determining the density of the colours in the picture, and take the integral part of this number modulo H.

The definition of the potential function and our way of colouring presuppose that the cycle is attracting, that is, not neutral. If the cycle is neutral, we cannot colour the Fatou domain in a natural way. As the terminus of the iteration is a revolving movement, we can, for instance, colour by the minimum distance from the cycle left fixed by the iteration.

Read more about this topic:  Julia Set

Famous quotes containing the words potential, function, real and/or number:

    The germ of violence is laid bare in the child abuser by the sheer accident of his individual experience ... in a word, to a greater degree than we like to admit, we are all potential child abusers.
    F. Gonzalez-Crussi, Mexican professor of pathology, author. “Reflections on Child Abuse,” Notes of an Anatomist (1985)

    The more books we read, the clearer it becomes that the true function of a writer is to produce a masterpiece and that no other task is of any consequence.
    Cyril Connolly (1903–1974)

    Perhaps the facts most astounding and most real are never communicated by man to man.
    Henry David Thoreau (1817–1862)

    No Government can be long secure without a formidable Opposition. It reduces their supporters to that tractable number which can be managed by the joint influences of fruition and hope. It offers vengeance to the discontented, and distinction to the ambitious; and employs the energies of aspiring spirits, who otherwise may prove traitors in a division or assassins in a debate.
    Benjamin Disraeli (1804–1881)