Jordan Measure of "simple Sets"
Consider the Euclidean space Rn. One starts by considering products of bounded intervals
which are closed at the left end and open at the right end (half-open intervals is a technical choice; as we see below, one can use closed or open intervals if preferred). Such a set will be called a n-dimensional rectangle, or simply a rectangle. One defines the Jordan measure of such a rectangle to be the product of the lengths of the intervals:
Next, one considers simple sets, sometimes called polyrectangles, which are finite unions of rectangles,
for any k≥1. One cannot define the Jordan measure of S as simply the sum of the measures of the individual rectangles, because such a representation of S is far from unique, and there could be significant overlaps between the rectangles. Luckily, any such simple set S can be rewritten as a union of another finite family of rectangles, rectangles which this time are mutually disjoint, and then one defines the Jordan measure m(S) as the sum of measures of the disjoint rectangles. One can show that this definition of the Jordan measure of S is independent of the representation of S as a finite union of disjoint rectangles. It is in the "rewriting" step that the assumption of rectangles being made of half-open intervals is used.
Read more about this topic: Jordan Measure
Famous quotes containing the words jordan, measure, simple and/or sets:
“As a child I was taught that to tell the truth was often painful. As an adult I have learned that not to tell the truth is more painful, and that the fear of telling the truthwhatever the truth may bethat fear is the most painful sensation of a moral life.”
—June Jordan (b. 1936)
“Desire is creation, is the magical element in that process. If there were an instrument by which to measure desire, one could foretell achievement.”
—Willa Cather (18731947)
“All the phenomena which surround him are simple and grand, and there is something impressive, even majestic, in the very motion he causes, which will naturally be communicated to his own character, and he feels the slow, irresistible movement under him with pride, as if it were his own energy.”
—Henry David Thoreau (18171862)
“Nothing sets a person up more than having something turn out just the way its supposed to be, like falling into a Swiss snowdrift and seeing a big dog come up with a little cask of brandy round its neck.”
—Claud Cockburn (19041981)