Background
In information theory, for any classical random variable, the classical Shannon entropy is a measure of how uncertain we are about the outcome of . For example, if is a probability distribution concentrated at one point, the outcome of is certain and therefore its entropy . At the other extreme, if is the uniform probability distribution with possible values, intuitively one would expect is associated with the most uncertainty. Indeed such uniform probability distributions have maximum possible entropy .
In quantum information theory, the notion of entropy is extended from probability distributions to quantum states, or density matrices. For a state, the von Neumann entropy is defined by
Applying the spectral theorem, or Borel functional calculus for infinite dimensional systems, we see that it generalizes the classical entropy. The physical meaning remains the same. A maximally mixed state, the quantum analog of the uniform probability distribution, has maximum von Neumann entropy. On the other hand, a pure state, or a rank one projection, will have zero von Neumann entropy. We write the von Neumann entropy (or sometimes .
Read more about this topic: Joint Quantum Entropy
Famous quotes containing the word background:
“In the true sense ones native land, with its background of tradition, early impressions, reminiscences and other things dear to one, is not enough to make sensitive human beings feel at home.”
—Emma Goldman (18691940)
“Silence is the universal refuge, the sequel to all dull discourses and all foolish acts, a balm to our every chagrin, as welcome after satiety as after disappointment; that background which the painter may not daub, be he master or bungler, and which, however awkward a figure we may have made in the foreground, remains ever our inviolable asylum, where no indignity can assail, no personality can disturb us.”
—Henry David Thoreau (18171862)
“... every experience in life enriches ones background and should teach valuable lessons.”
—Mary Barnett Gilson (1877?)