Joint Probability Distribution - General Multidimensional Distributions

General Multidimensional Distributions

Remember that the cumulative distribution function for a vector of random variables is defined in terms of their joint probability distribution;


The joint distribution for two random variables can be extended to many random variables X1, ... Xn by adding them sequentially with the identity

\begin{align} f_{X_1, \ldots X_n}(x_1, \ldots x_n) =& f_{X_n | X_1, \ldots X_{n-1}}( x_n | x_1, \ldots x_{n-1}) f_{X_1, \ldots X_{n-1}}( x_1, \ldots x_{n-1} )\\
=& f_{X_1} (x_1) \\ & \cdot f_{X_2|X_1} (x_2|x_1)\\ & \cdot \dots \\ & \cdot f_{X_{n-1}| X_1 \ldots X_{n-2}}(x_{n-1}| x_1, \ldots x_{n-2} ) \\ & \cdot f_{X_n | X_1, \ldots X_{n-1}}( x_n | x_1, \ldots x_{n-1}),\end{align}

where

\begin{align}
f_{X_i| X_1, \ldots X_{i-1}}(x_i | x_1, \ldots x_{i-1})= &\frac{f_{X_1, \dots X_i}(x_1,\dots x_i)}{\int f_{X_1, \dots X_i}(x_1,\dots x_{i-1},u_i) \mathrm{d} u_i}\\
= &\frac{\int \dots \int f_{X_1, \dots X_n}(x_1,\dots x_i,u_{i+1}, \dots u_n) \mathrm{d} u_{i+1}\dots \mathrm{d}u_n}{\int \dots \int \int f_{X_1, \dots X_n}(x_1,\dots x_{i-1},u_i, \dots u_n) \mathrm{d} u_i \,\mathrm{d} u_{i+1}\dots \mathrm{d}u_n}
\end{align}

and

(notice, that these latter identities can be useful to generate a random variable with given distribution function ); the density of the marginal distribution is

The joint cumulative distribution function is

and the conditional distribution function is accordingly

\begin{align}
F_{X_i| X_1, \ldots X_{i-1}}(x_i| x_1, \ldots x_{i-1})= &\frac{\int_{-\infty}^{x_i}f_{X_1, \dots X_i}(x_1,\dots x_{i-1},u_i)\mathrm{d}u_i}{\int_{-\infty}^\infty f_{X_1, \dots X_i}(x_1,\dots x_{i-1},u_i) \mathrm{d} u_i}\\
= &\frac{\int_{-\infty}^\infty \dots \int_{-\infty}^\infty \int_{-\infty}^{x_i} f_{X_1, \dots X_n}(x_1,\dots x_{i-1},u_i, \dots u_n) \mathrm{d} u_i\dots \mathrm{d}u_n}{\int_{-\infty}^\infty \dots \int_{-\infty}^\infty \int_{-\infty}^\infty f_{X_1, \dots X_n}(x_1,\dots x_{i-1},u_i,\dots u_n) \mathrm{d} u_i \dots \mathrm{d} u_n}.
\end{align}


Expectation reads

suppose that h is smooth enough and for, then, by iterated integration by parts,

\begin{align}\mathbb{E}\left=& h(x_1,\dots x_n)+ \\
& (-1)^n \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} F_{X_1,\dots X_n}(u_1,\dots u_n) \frac{\partial^n}{\partial x_1 \dots \partial x_n} h(u_1,\dots u_n) \mathrm{d} u_1 \dots \mathrm{d} u_n.\end{align}

Read more about this topic:  Joint Probability Distribution

Famous quotes containing the word general:

    Anti-Nebraska, Know-Nothings, and general disgust with the powers that be, have carried this county [Hamilton County, Ohio] by between seven and eight thousand majority! How people do hate Catholics, and what a happiness it was to show it in what seemed a lawful and patriotic manner.
    Rutherford Birchard Hayes (1822–1893)