Definition in Terms of Theta Functions
Equivalently, Jacobi elliptic functions can be defined in terms of his theta functions. If we abbreviate as, and respectively as (the theta constants) then the elliptic modulus k is . If we set, we have
Since the Jacobi functions are defined in terms of the elliptic modulus k(τ), we need to invert this and find τ in terms of k. We start from, the complementary modulus. As a function of τ it is
Let us first define
Then define the nome q as and expand as a power series in the nome q, we obtain
Reversion of series now gives
Since we may reduce to the case where the imaginary part of τ is greater than or equal to 1/2 sqrt(3), we can assume the absolute value of q is less than or equal to exp(-1/2 sqrt(3) π) ~ 0.0658; for values this small the above series converges very rapidly and easily allows us to find the appropriate value for q.
Read more about this topic: Jacobi Elliptic Functions
Famous quotes containing the words definition, terms and/or functions:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“Consider his life which was valueless
In terms of employment, hotel ledgers, news files.
Consider. One bullet in ten thousand kills a man.
Ask. Was so much expenditure justified
On the death of one so young and so silly
Lying under the olive tree, O world, O death?”
—Stephen Spender (19091995)
“Let us stop being afraid. Of our own thoughts, our own minds. Of madness, our own or others. Stop being afraid of the mind itself, its astonishing functions and fandangos, its complications and simplifications, the wonderful operation of its machinerymore wonderful because it is not machinery at all or predictable.”
—Kate Millett (b. 1934)