In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions, and auxiliary theta functions, that are of historical importance. Many of their features show up in important structures and have direct relevance to some applications (e.g. the equation of a pendulum—also see pendulum (mathematics)). They also have useful analogies to the functions of trigonometry, as indicated by the matching notation sn for sin. The Jacobi elliptic functions occur more often in practical problems than the Weierstrass elliptic functions. They were introduced by Carl Gustav Jakob Jacobi (1829).
Read more about Jacobi Elliptic Functions: Introduction, Notation, Definition As Inverses of Elliptic Integrals, Definition in Terms of Theta Functions, Minor Functions, Addition Theorems, Relations Between Squares of The Functions, Expansion in Terms of The Nome, Jacobi Elliptic Functions As Solutions of Nonlinear Ordinary Differential Equations, Map Projection
Famous quotes containing the words jacobi and/or functions:
“... spinsterhood [is considered to be] an abnormality of small proportions and small consequence, something like an extra finger or two on the body, presumably of temporary duration, and never of any social significance.”
—Mary Putnam Jacobi (18421906)
“Adolescents, for all their self-involvement, are emerging from the self-centeredness of childhood. Their perception of other people has more depth. They are better equipped at appreciating others reasons for action, or the basis of others emotions. But this maturity functions in a piecemeal fashion. They show more understanding of their friends, but not of their teachers.”
—Terri Apter (20th century)