Isoperimetric Inequality - Isoperimetric Inequalities in A Metric Measure Space

Isoperimetric Inequalities in A Metric Measure Space

Most of the work on isoperimetric problem has been done in the context of smooth regions in Euclidean spaces, or more generally, in Riemannian manifolds. However, the isoperimetric problem can be formulated in much greater generality, using the notion of Minkowski content. Let be a metric measure space: X is a metric space with metric d, and μ is a Borel measure on X. The boundary measure, or Minkowski content, of a measurable subset A of X is defined as the lim inf

where

is the ε-extension of A.

The isoperimetric problem in X asks how small can be for a given μ(A). If X is the Euclidean plane with the usual distance and the Lebesgue measure then this question generalizes the classical isoperimetric problem to planar regions whose boundary is not necessarily smooth, although the answer turns out to be the same.

The function

is called the isoperimetric profile of the metric measure space . Isoperimetric profiles have been studied for Cayley graphs of discrete groups and for special classes of Riemannian manifolds (where usually only regions A with regular boundary are considered).

Read more about this topic:  Isoperimetric Inequality

Famous quotes containing the words inequalities, measure and/or space:

    In many places the road was in that condition called repaired, having just been whittled into the required semicylindrical form with the shovel and scraper, with all the softest inequalities in the middle, like a hog’s back with the bristles up.
    Henry David Thoreau (1817–1862)

    A solitary traveler whom we saw perambulating in the distance loomed like a giant. He appeared to walk slouchingly, as if held up from above by straps under his shoulders, as much as supported by the plain below. Men and boys would have appeared alike at a little distance, there being no object by which to measure them. Indeed, to an inlander, the Cape landscape is a constant mirage.
    Henry David Thoreau (1817–1862)

    Play is a major avenue for learning to manage anxiety. It gives the child a safe space where she can experiment at will, suspending the rules and constraints of physical and social reality. In play, the child becomes master rather than subject.... Play allows the child to transcend passivity and to become the active doer of what happens around her.
    Alicia F. Lieberman (20th century)