Iron - Chemistry and Compounds

Chemistry and Compounds

See also category: Iron compounds
Representative compound
−2 Disodium tetracarbonylferrate (Collman's reagent)
0 Iron pentacarbonyl
1 Cyclopentadienyliron dicarbonyl dimer ("Fp2")
2 Ferrous sulfate, ferrocene
3 Ferric chloride, ferrocenium tetrafluoroborate
4 Barium ferrate(IV)
6 Potassium ferrate

Iron forms compounds mainly in the +2 and +3 oxidation states. Traditionally, iron(II) compounds are called ferrous, and iron(III) compounds ferric. Iron also occurs in higher oxidation states, an example being the purple potassium ferrate (K2FeO4) which contains iron in its +6 oxidation state. Iron(IV) is a common intermediate in many in biochemical oxidation reactions. Numerous organometallic compounds contain formal oxidation states of +1, 0, −1, or even −2. The oxidation states and other bonding properties are often assessed using the technique of Mössbauer spectroscopy. There are also many mixed valence compounds that contain both iron(II) and iron(III) centers, such as magnetite and Prussian blue (Fe4(Fe6)3). The latter is used as the traditional "blue" in blueprints.

The iron compounds produced on the largest scale in industry are iron(II) sulfate (FeSO4·7H2O) and iron(III) chloride (FeCl3). The former is one of the most readily available sources of iron(II), but is less stable to aerial oxidation than Mohr's salt ((NH4)2Fe(SO4)2·6H2O). Iron(II) compounds tend to be oxidized to iron(III) compounds in the air.

Unlike many other metals, iron does not form amalgams with mercury. As a result, mercury is traded in standardized 76 pound flasks (34 kg) made of iron.

Read more about this topic:  Iron

Famous quotes containing the words chemistry and/or compounds:

    Science with its retorts would have put me to sleep; it was the opportunity to be ignorant that I improved. It suggested to me that there was something to be seen if one had eyes. It made a believer of me more than before. I believed that the woods were not tenantless, but choke-full of honest spirits as good as myself any day,—not an empty chamber, in which chemistry was left to work alone, but an inhabited house,—and for a few moments I enjoyed fellowship with them.
    Henry David Thoreau (1817–1862)

    We can come up with a working definition of life, which is what we did for the Viking mission to Mars. We said we could think in terms of a large molecule made up of carbon compounds that can replicate, or make copies of itself, and metabolize food and energy. So that’s the thought: macrocolecule, metabolism, replication.
    Cyril Ponnamperuma (b. 1923)