Left Ideals
If A is an algebra, one can define a left regular representation Φ on A: Φ(a)b = ab is a homomorphism from A to L(A), the algebra of linear transformations on A
The invariant subspaces of Φ are precisely the left ideals of A. A left ideal M of A gives a subrepresentation of A on M.
If M is a left ideal of A. Consider the quotient vector space A/M. The left regular representation Φ on M now descends to a representation Φ' on A/M. If denotes an equivalence class in A/M, Φ'(a) = . The kernel of the representation Φ' is the set {a ∈ A| ab ∈ M for all b}.
The representation Φ' is irreducible if and only if M is a maximal left ideal, since a subspace V ⊂ A/M is an invariant under {Φ'(a)| a ∈ A} if and only if its preimage under the quotient map, V + M, is a left ideal in A.
Read more about this topic: Invariant Subspace
Famous quotes containing the words left and/or ideals:
“Machinery that gives us abundance has left us in want. Our knowledge has made us cynical, our cleverness hard and unkind. We think too much and feel too little. More than machinery, we need humanity. More than cleverness, we need kindness and gentleness. Without these qualities, life will be violent, and all will be lost.”
—Charlie Chaplin (18891977)
“The real weakness of England lies, not in incomplete armaments or unfortified coasts, not in the poverty that creeps through sunless lanes, or the drunkenness that brawls in loathsome courts, but simply in the fact that her ideals are emotional and not intellectual.”
—Oscar Wilde (18541900)