Invariant Subspace - Left Ideals

Left Ideals

If A is an algebra, one can define a left regular representation Φ on A: Φ(a)b = ab is a homomorphism from A to L(A), the algebra of linear transformations on A

The invariant subspaces of Φ are precisely the left ideals of A. A left ideal M of A gives a subrepresentation of A on M.

If M is a left ideal of A. Consider the quotient vector space A/M. The left regular representation Φ on M now descends to a representation Φ' on A/M. If denotes an equivalence class in A/M, Φ'(a) = . The kernel of the representation Φ' is the set {aA| abM for all b}.

The representation Φ' is irreducible if and only if M is a maximal left ideal, since a subspace VA/M is an invariant under {Φ'(a)| aA} if and only if its preimage under the quotient map, V + M, is a left ideal in A.

Read more about this topic:  Invariant Subspace

Famous quotes containing the words left and/or ideals:

    Children rarely want to know who their parents were before they were parents, and when age finally stirs their curiosity, there is no parent left to tell them.
    Russell Baker (20th century)

    My own ideals for the university are those of a genuine democracy and serious scholarship. These two, indeed, seem to go together.
    Woodrow Wilson (1856–1924)