Integrally Closed - Ordered Groups

Ordered Groups

An ordered group G is called integrally closed if and only if for all elements a and b of G, if anb for all natural n then a ≤ 1.

This property is somewhat stronger than the fact that an ordered group is Archimedean. Though for a lattice-ordered group to be integrally closed and to be Archimedean is equivalent. We have the surprising theorem that every integrally closed directed group is already abelian. This has to do with the fact that a directed group is embeddable into a complete lattice-ordered group if and only if it is integrally closed. Furthermore, every archimedean lattice-ordered group is abelian.

Read more about this topic:  Integrally Closed

Famous quotes containing the words ordered and/or groups:

    In spite of our worries to the contrary, children are still being born with the innate ability to learn spontaneously, and neither they nor their parents need the sixteen-page instructional manual that came with a rattle ordered for our baby boy!
    Neil Kurshan (20th century)

    Trees appeared in groups and singly, revolving coolly and blandly, displaying the latest fashions. The blue dampness of a ravine. A memory of love, disguised as a meadow. Wispy clouds—the greyhounds of heaven.
    Vladimir Nabokov (1899–1977)