If R is a given integral domain, the smallest field containing R as a subring is uniquely determined up to isomorphism and is called the field of fractions or quotient field of R. It can be thought of as consisting of all fractions a/b with a and b in R and b ≠ 0, modulo an appropriate equivalence relation. The field of fractions of the integers is the field of rational numbers. The field of fractions of a field is isomorphic to the field itself.
Read more about this topic: Integral Domain
Famous quotes containing the words field of and/or field:
“Never in the field of human conflict was so much owed by so many to so few.”
—Winston Churchill (18741965)
“In the beginning, I wanted to enter what was essentially a mans field. I wanted to prove I could do it. Then I found that when I did as well as the men in the field I got more credit for my work because I am a woman, which seems unfair.”
—Eugenie Clark (b. 1922)