Equivalent Forms
The following are all equivalent to the above definition:
- a point on a curve at which the second derivative changes sign. This is very similar to the previous definition, since the sign of the curvature is always the same as the sign of the second derivative, but note that the curvature is not the same as the second derivative.
- a point (x, y) on a function, f(x), at which the first derivative, f′(x), is at an extremum, i.e. a (local) minimum or maximum. (This is not the same as saying that y is at an extremum).
- a point p on a curve at which the tangent crosses the curve at that point. For an algebraic curve, this means a non singular point where the multiplicity of the intersection at p of the tangent line and the curve is odd and greater than 2.
Read more about this topic: Inflection Point
Famous quotes containing the words equivalent and/or forms:
“Every notable advance in technique or organization has to be paid for, and in most cases the debit is more or less equivalent to the credit. Except of course when its more than equivalent, as it has been with universal education, for example, or wireless, or these damned aeroplanes. In which case, of course, your progress is a step backwards and downwards.”
—Aldous Huxley (18941963)
“One way to think about play, is as the process of finding new combinations for known thingscombinations that may yield new forms of expression, new inventions, new discoveries, and new solutions....Its exactly what childrens play seems to be about and explains why so many people have come to think that childrens play is so important a part of childhoodand beyond.”
—Fred Rogers (20th century)