Inflection Point - Equivalent Forms

Equivalent Forms

The following are all equivalent to the above definition:

  • a point on a curve at which the second derivative changes sign. This is very similar to the previous definition, since the sign of the curvature is always the same as the sign of the second derivative, but note that the curvature is not the same as the second derivative.
  • a point (x, y) on a function, f(x), at which the first derivative, f′(x), is at an extremum, i.e. a (local) minimum or maximum. (This is not the same as saying that y is at an extremum).
  • a point p on a curve at which the tangent crosses the curve at that point. For an algebraic curve, this means a non singular point where the multiplicity of the intersection at p of the tangent line and the curve is odd and greater than 2.

Read more about this topic:  Inflection Point

Famous quotes containing the words equivalent and/or forms:

    Perhaps basketball and poetry have just a few things in common, but the most important is the possibility of transcendence. The opposite is labor. In writing, every writer knows when he or she is laboring to achieve an effect. You want to get from here to there, but find yourself willing it, forcing it. The equivalent in basketball is aiming your shot, a kind of strained and usually ineffective purposefulness. What you want is to be in some kind of flow, each next moment a discovery.
    Stephen Dunn (b. 1939)

    “There is no exquisite beauty,” says Bacon, Lord Verulam, speaking truly of all the forms and genera of beauty, “without some strangeness in the proportion.”
    Edgar Allan Poe (1809–1849)