Infinite-dimensional Holomorphy - Holomorphic Functions Between Banach Spaces

Holomorphic Functions Between Banach Spaces

More generally, given two Banach spaces X and Y over the complex numbers and an open set U in X, f : UY is called holomorphic if the Fréchet derivative of f exists at every point in U. One can show that, in this more general context, it is still true that a holomorphic function is analytic, that is, it can be locally expanded in a power series. It is no longer true however that if a function is defined and holomorphic in a ball, its power series around the center of the ball is convergent in the entire ball; for example, there exist holomorphic functions defined on the entire space which have a finite radius of convergence.

Read more about this topic:  Infinite-dimensional Holomorphy

Famous quotes containing the words functions and/or spaces:

    One of the most highly valued functions of used parents these days is to be the villains of their children’s lives, the people the child blames for any shortcomings or disappointments. But if your identity comes from your parents’ failings, then you remain forever a member of the child generation, stuck and unable to move on to an adulthood in which you identify yourself in terms of what you do, not what has been done to you.
    Frank Pittman (20th century)

    Surely, we are provided with senses as well fitted to penetrate the spaces of the real, the substantial, the eternal, as these outward are to penetrate the material universe. Veias, Menu, Zoroaster, Socrates, Christ, Shakespeare, Swedenborg,—these are some of our astronomers.
    Henry David Thoreau (1817–1862)