Inequality of Arithmetic and Geometric Means - Example Application

Example Application

Consider the function

for all positive real numbers x, y and z. Suppose we wish to find the minimal value of this function. First we rewrite it a bit:


\begin{align}
f(x,y,z)
&= 6 \cdot \frac{ \frac{x}{y} + \frac{1}{2} \sqrt{\frac{y}{z}} + \frac{1}{2} \sqrt{\frac{y}{z}} + \frac{1}{3} \sqrt{\frac{z}{x}} + \frac{1}{3} \sqrt{\frac{z}{x}} + \frac{1}{3} \sqrt{\frac{z}{x}} }{6}\\
&=6\cdot\frac{x_1+x_2+x_3+x_4+x_5+x_6}{6}
\end{align}

with

Applying the AM–GM inequality for n = 6, we get


\begin{align}
f(x,y,z)
&\ge 6 \cdot \sqrt{ \frac{x}{y} \cdot \frac{1}{2} \sqrt{\frac{y}{z}} \cdot \frac{1}{2} \sqrt{\frac{y}{z}} \cdot \frac{1}{3} \sqrt{\frac{z}{x}} \cdot \frac{1}{3} \sqrt{\frac{z}{x}} \cdot \frac{1}{3} \sqrt{\frac{z}{x}} }\\
&= 6 \cdot \sqrt{ \frac{1}{2 \cdot 2 \cdot 3 \cdot 3 \cdot 3} \frac{x}{y} \frac{y}{z} \frac{z}{x} }\\
&= 2^{2/3} \cdot 3^{1/2}.
\end{align}

Further, we know that the two sides are equal exactly when all the terms of the mean are equal:

All the points (x,y,z) satisfying these conditions lie on a half-line starting at the origin and are given by

Read more about this topic:  Inequality Of Arithmetic And Geometric Means

Famous quotes containing the word application:

    The main object of a revolution is the liberation of man ... not the interpretation and application of some transcendental ideology.
    Jean Genet (1910–1986)

    The receipt to make a speaker, and an applauded one too, is short and easy.—Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)