Inequality of Arithmetic and Geometric Means - Example Application

Example Application

Consider the function

for all positive real numbers x, y and z. Suppose we wish to find the minimal value of this function. First we rewrite it a bit:


\begin{align}
f(x,y,z)
&= 6 \cdot \frac{ \frac{x}{y} + \frac{1}{2} \sqrt{\frac{y}{z}} + \frac{1}{2} \sqrt{\frac{y}{z}} + \frac{1}{3} \sqrt{\frac{z}{x}} + \frac{1}{3} \sqrt{\frac{z}{x}} + \frac{1}{3} \sqrt{\frac{z}{x}} }{6}\\
&=6\cdot\frac{x_1+x_2+x_3+x_4+x_5+x_6}{6}
\end{align}

with

Applying the AM–GM inequality for n = 6, we get


\begin{align}
f(x,y,z)
&\ge 6 \cdot \sqrt{ \frac{x}{y} \cdot \frac{1}{2} \sqrt{\frac{y}{z}} \cdot \frac{1}{2} \sqrt{\frac{y}{z}} \cdot \frac{1}{3} \sqrt{\frac{z}{x}} \cdot \frac{1}{3} \sqrt{\frac{z}{x}} \cdot \frac{1}{3} \sqrt{\frac{z}{x}} }\\
&= 6 \cdot \sqrt{ \frac{1}{2 \cdot 2 \cdot 3 \cdot 3 \cdot 3} \frac{x}{y} \frac{y}{z} \frac{z}{x} }\\
&= 2^{2/3} \cdot 3^{1/2}.
\end{align}

Further, we know that the two sides are equal exactly when all the terms of the mean are equal:

All the points (x,y,z) satisfying these conditions lie on a half-line starting at the origin and are given by

Read more about this topic:  Inequality Of Arithmetic And Geometric Means

Famous quotes containing the word application:

    Science is intimately integrated with the whole social structure and cultural tradition. They mutually support one other—only in certain types of society can science flourish, and conversely without a continuous and healthy development and application of science such a society cannot function properly.
    Talcott Parsons (1902–1979)

    We will not be imposed upon by this vast application of forces. We believe that most things will have to be accomplished still by the application called Industry. We are rather pleased, after all, to consider the small private, but both constant and accumulated, force which stands behind every spade in the field. This it is that makes the valleys shine, and the deserts really bloom.
    Henry David Thoreau (1817–1862)