Complex Numbers and Inequalities
The set of complex numbers with its operations of addition and multiplication is a field, but it is impossible to define any relation ≤ so that becomes an ordered field. To make an ordered field, it would have to satisfy the following two properties:
- if a ≤ b then a + c ≤ b + c
- if 0 ≤ a and 0 ≤ b then 0 ≤ a b
Because ≤ is a total order, for any number a, either 0 ≤ a or a ≤ 0 (in which case the first property above implies that 0 ≤ ). In either case 0 ≤ a2; this means that and ; so and, which means ; contradiction.
However, an operation ≤ can be defined so as to satisfy only the first property (namely, "if a ≤ b then a + c ≤ b + c"). Sometimes the lexicographical order definition is used:
- a ≤ b if < or ( and ≤ )
It can easily be proven that for this definition a ≤ b implies a + c ≤ b + c.
Read more about this topic: Inequality (mathematics)
Famous quotes containing the words complex, numbers and/or inequalities:
“In the case of all other sciences, arts, skills, and crafts, everyone is convinced that a complex and laborious programme of learning and practice is necessary for competence. Yet when it comes to philosophy, there seems to be a currently prevailing prejudice to the effect that, although not everyone who has eyes and fingers, and is given leather and last, is at once in a position to make shoes, everyone nevertheless immediately understands how to philosophize.”
—Georg Wilhelm Friedrich Hegel (17701831)
“The forward Youth that would appear
Must now forsake his Muses dear,
Nor in the Shadows sing
His Numbers languishing.”
—Andrew Marvell (16211678)
“In many places the road was in that condition called repaired, having just been whittled into the required semicylindrical form with the shovel and scraper, with all the softest inequalities in the middle, like a hogs back with the bristles up.”
—Henry David Thoreau (18171862)