Inequality (mathematics) - Complex Numbers and Inequalities

Complex Numbers and Inequalities

The set of complex numbers with its operations of addition and multiplication is a field, but it is impossible to define any relation ≤ so that becomes an ordered field. To make an ordered field, it would have to satisfy the following two properties:

  • if ab then a + cb + c
  • if 0 ≤ a and 0 ≤ b then 0 ≤ a b

Because ≤ is a total order, for any number a, either 0 ≤ a or a ≤ 0 (in which case the first property above implies that 0 ≤ ). In either case 0 ≤ a2; this means that and ; so and, which means ; contradiction.

However, an operation ≤ can be defined so as to satisfy only the first property (namely, "if ab then a + cb + c"). Sometimes the lexicographical order definition is used:

  • a ≤ b if < or ( and ≤ )

It can easily be proven that for this definition ab implies a + cb + c.

Read more about this topic:  Inequality (mathematics)

Famous quotes containing the words complex, numbers and/or inequalities:

    It would be naive to think that peace and justice can be achieved easily. No set of rules or study of history will automatically resolve the problems.... However, with faith and perseverance,... complex problems in the past have been resolved in our search for justice and peace. They can be resolved in the future, provided, of course, that we can think of five new ways to measure the height of a tall building by using a barometer.
    Jimmy Carter (James Earl Carter, Jr.)

    The only phenomenon with which writing has always been concomitant is the creation of cities and empires, that is the integration of large numbers of individuals into a political system, and their grading into castes or classes.... It seems to have favored the exploitation of human beings rather than their enlightenment.
    Claude Lévi-Strauss (b. 1908)

    The only inequalities that matter begin in the mind. It is not income levels but differences in mental equipment that keep people apart, breed feelings of inferiority.
    Jacquetta Hawkes (b. 1910)