Inductive Dimension - Formal Definition

Formal Definition

We want the dimension of a point to be 0, and a point has empty boundary, so we start with

Then inductively, ind(X) is the smallest n such that, for every and every open set U containing x, there is an open V containing x, where the closure of V is a subset of U, such that the boundary of V has small inductive dimension less than or equal to n − 1. (In the case above, where X is Euclidean n-dimensional space, V will be chosen to be an n-dimensional ball centered at x.)

For the large inductive dimension, we restrict the choice of V still further; Ind(X) is the smallest n such that, for every closed subset F of every open subset U of X, there is an open V in between (that is, F is a subset of V and the closure of V is a subset of U), such that the boundary of V has large inductive dimension less than or equal to n − 1.

Read more about this topic:  Inductive Dimension

Famous quotes containing the words formal and/or definition:

    That anger can be expressed through words and non-destructive activities; that promises are intended to be kept; that cleanliness and good eating habits are aspects of self-esteem; that compassion is an attribute to be prized—all these lessons are ones children can learn far more readily through the living example of their parents than they ever can through formal instruction.
    Fred Rogers (20th century)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)