Ideal (order Theory)
In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different notion. Ideals are of great importance for many constructions in order and lattice theory.
Read more about Ideal (order Theory): Basic Definitions, Prime Ideals, Maximal Ideals, Applications, History, Literature
Famous quotes containing the word ideal:
“Cassoulet, that best of bean feasts, is everyday fare for a peasant but ambrosia for a gastronome, though its ideal consumer is a 300-pound blocking back who has been splitting firewood nonstop for the last twelve hours on a subzero day in Manitoba.”
—Julia Child (b. 1912)