Ideal Class Group - Connections To Class Field Theory

Connections To Class Field Theory

Class field theory is a branch of algebraic number theory which seeks to classify all the abelian extensions of a given algebraic number field, meaning Galois extensions with abelian Galois group. A particularly beautiful example is found in the Hilbert class field of a number field, which can be defined as the maximal unramified abelian extension of such a field. The Hilbert class field L of a number field K is unique and has the following properties:

  • Every ideal of the ring of integers of K becomes principal in L, i.e., if I is an integral ideal of K then the image of I is a principal ideal in L.
  • L is a Galois extension of K with Galois group isomorphic to the ideal class group of K.

Neither property is particularly easy to prove.

Read more about this topic:  Ideal Class Group

Famous quotes containing the words connections, class, field and/or theory:

    A foreign minister, I will maintain it, can never be a good man of business if he is not an agreeable man of pleasure too. Half his business is done by the help of his pleasures: his views are carried on, and perhaps best, and most unsuspectedly, at balls, suppers, assemblies, and parties of pleasure; by intrigues with women, and connections insensibly formed with men, at those unguarded hours of amusement.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    In verity ... we are the poor. This humanity we would claim for ourselves is the legacy, not only of the Enlightenment, but of the thousands and thousands of European peasants and poor townspeople who came here bringing their humanity and their sufferings with them. It is the absence of a stable upper class that is responsible for much of the vulgarity of the American scene. Should we blush before the visitor for this deficiency?
    Mary McCarthy (1912–1989)

    And they wonder, as waiting the long years through
    In the dust of that little chair,
    What has become of our Little Boy Blue,
    Since he kissed them and put them there.
    —Eugene Field (1850–1895)

    The great tragedy of science—the slaying of a beautiful theory by an ugly fact.
    Thomas Henry Huxley (1825–1895)