Dedekind Domain

In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains which are sometimes taken as the definition: see below.

Note that a field is a commutative ring in which there are no nontrivial proper ideals, so that any field is a Dedekind domain, however in a rather vacuous way. Some authors add the requirement that a Dedekind domain not be a field. Many more authors state theorems for Dedekind domains with the implicit proviso that they may require trivial modifications for the case of fields.

An immediate consequence of the definition is that every principal ideal domain (PID) is a Dedekind domain. In fact a Dedekind domain is a unique factorization domain (UFD) if and only if it is a PID.

Read more about Dedekind Domain:  The Prehistory of Dedekind Domains, Alternative Definitions, Some Examples of Dedekind Domains, Fractional Ideals and The Class Group, Finitely Generated Modules Over A Dedekind Domain, Locally Dedekind Rings

Famous quotes containing the word domain:

    The vice named surrealism is the immoderate and impassioned use of the stupefacient image or rather of the uncontrolled provocation of the image for its own sake and for the element of unpredictable perturbation and of metamorphosis which it introduces into the domain of representation; for each image on each occasion forces you to revise the entire Universe.
    Louis Aragon (1897–1982)