Mathematical Example
The function
exhibits hyperbolic growth with a singularity at time : in the limit as, the function goes to infinity.
More generally, the function
exhibits hyperbolic growth, where is a scale factor.
Note that this algebraic function can be regarded as analytical solution for the function's differential:
This means that with hyperbolic growth the absolute growth rate of the variable x in the moment t is proportional to the square of the value of x in the moment t.
Respectively, the quadratic-hyperbolic function looks as follows:
Read more about this topic: Hyperbolic Growth
Famous quotes containing the word mathematical:
“All science requires mathematics. The knowledge of mathematical things is almost innate in us.... This is the easiest of sciences, a fact which is obvious in that no ones brain rejects it; for laymen and people who are utterly illiterate know how to count and reckon.”
—Roger Bacon (c. 1214c. 1294)
“What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.”
—Boris Pasternak (18901960)