Hyperbolic Growth

When a quantity grows towards a singularity under a finite variation (a "finite-time singularity") it is said to undergo hyperbolic growth. More precisely, the reciprocal function has a hyperbola as a graph, and has a singularity at 0, meaning that the limit as is infinity: any similar graph is said to exhibit hyperbolic growth.

Read more about Hyperbolic Growth:  Description, Mathematical Example

Famous quotes containing the word growth:

    The windy springs and the blazing summers, one after another, had enriched and mellowed that flat tableland; all the human effort that had gone into it was coming back in long, sweeping lines of fertility. The changes seemed beautiful and harmonious to me; it was like watching the growth of a great man or of a great idea. I recognized every tree and sandbank and rugged draw. I found that I remembered the conformation of the land as one remembers the modelling of human faces.
    Willa Cather (1873–1947)