Hurwitz Zeta Function - Relation To Dirichlet L-functions

Relation To Dirichlet L-functions

At rational arguments the Hurwitz zeta function may be expressed as a linear combination of Dirichlet L-functions and vice versa: The Hurwitz zeta function coincides with Riemann's zeta function ζ(s) when q = 1, when q = 1/2 it is equal to (2s−1)ζ(s), and if q = n/k with k > 2, (n,k) > 1 and 0 < n < k, then

the sum running over all Dirichlet characters mod k. In the opposite direction we have the linear combination

There is also the multiplication theorem

of which a useful generalization is the distribution relation

(This last form is valid whenever q a natural number and 1 − qa is not.)

Read more about this topic:  Hurwitz Zeta Function

Famous quotes containing the words relation to and/or relation:

    Whoever has a keen eye for profits, is blind in relation to his craft.
    Sophocles (497–406/5 B.C.)

    When needs and means become abstract in quality, abstraction is also a character of the reciprocal relation of individuals to one another. This abstract character, universality, is the character of being recognized and is the moment which makes concrete, i.e. social, the isolated and abstract needs and their ways and means of satisfaction.
    Georg Wilhelm Friedrich Hegel (1770–1831)