Homotopy Principle

In mathematics, the homotopy principle (or h-principle) is a very general way to solve partial differential equations (PDEs), and more generally partial differential relations (PDRs). The h-principle is good for underdetermined PDEs or PDRs, such as occur in the immersion problem, isometric immersion problem, and other areas.

The theory was started by works of Yakov Eliashberg, Mikhail Gromov and Anthony V. Phillips. It was based on earlier results that reduced partial differential relations to homotopy, particularly for immersions. These started with the Whitney–Graustein theorem, and followed the work of Stephen Smale and Morris W. Hirsch on immersions; also work by Nicolaas Kuiper and John Forbes Nash.

Read more about Homotopy Principle:  Rough Idea, Ways To Prove The H-principle, Some Paradoxes

Famous quotes containing the word principle:

    No habit or quality is more easily acquired than hypocrisy, nor any thing sooner learned than to deny the sentiments of our hearts and the principle we act from: but the seeds of every passion are innate to us, and nobody comes into the world without them.
    Bernard Mandeville (1670–1733)