Homogeneous Space - Formal Definition

Formal Definition

Let X be a non-empty set and G a group. Then X is called a G-space if it is equipped with an action of G on X. Note that automatically G acts by automorphisms (bijections) on the set. If X in addition belongs to some category, then the elements of G are assumed to act as automorphisms in the same category. Thus the maps on X effected by G are structure preserving. A homogeneous space is a G-space on which G acts transitively.

Succinctly, if X is an object of the category C, then the structure of a G-space is a homomorphism:

into the group of automorphisms of the object X in the category C. The pair (X,ρ) defines a homogeneous space provided ρ(G) is a transitive group of symmetries of the underlying set of X.

Read more about this topic:  Homogeneous Space

Famous quotes containing the words formal and/or definition:

    The bed is now as public as the dinner table and governed by the same rules of formal confrontation.
    Angela Carter (1940–1992)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)