Homogeneous Coordinates - Circular Points

Circular Points

The homogeneous form for the equation of a circle is x2 + y2 + 2axz + 2byz + cz2. The intersection of this curve with the line at infinity can be found by setting z = 0. This produces the equation x2 + y2 = 0 which has two solutions in the complex projective plane, (1, i, 0) and (1, −i, 0). These points are called the circular points at infinity and can be regarded as the common points of intersection of all circles. This can be generalized to curves of higher order as circular algebraic curves. A commonly known type of homogeneous coordinates are trilinear coordinates.

Read more about this topic:  Homogeneous Coordinates

Famous quotes containing the words circular and/or points:

    Oh Lolita, you are my girl, as Vee was Poe’s and Bea Dante’s, and what little girl would not like to whirl in a circular skirt and scanties?
    Vladimir Nabokov (1899–1977)

    If I were in the unenviable position of having to study my work my points of departure would be the “Naught is more real ...” and the “Ubi nihil vales ...” both already in Murphy and neither very rational.
    Samuel Beckett (1906–1989)