Homogeneity (statistics)

Homogeneity (statistics)

In statistics, homogeneity and its opposite, heterogeneity, arise in describing the properties of a dataset, or several datasets. They relate to the validity of the often convenient assumption that the statistical properties of any one part of an overall dataset are the same as any other part. In meta-analysis, which combines the data from several studies, homogeneity measures the differences or similarities between the several studies (see also Study heterogeneity).

Homogeneity can be studied to several degrees of complexity. For example, considerations of homoscedasticity examine how much the variability of data-values changes throughout a dataset. However, questions of homogeneity apply to all aspects of the statistical distributions, including the location parameter. Thus, a more detailed study would examine changes to the whole of the marginal distribution. An intermediate-level study might move from looking at the variability to studying changes in the skewness. In addition to these, questions of homogeneity apply also to the joint distributions.

The concept of homogeneity can be applied in many different ways and, for certain types of statistical analysis, it is used to look for further properties that might need to be treated as varying within a dataset once some initial types of non-homogeneity have been dealt with.

Read more about Homogeneity (statistics):  Tests

Famous quotes containing the word homogeneity:

    Dissonance between family and school, therefore, is not only inevitable in a changing society; it also helps to make children more malleable and responsive to a changing world. By the same token, one could say that absolute homogeneity between family and school would reflect a static, authoritarian society and discourage creative, adaptive development in children.
    Sara Lawrence Lightfoot (20th century)